亚州一区二区三区中文字幕国产精品-日韩人妻一区二区三区蜜桃视频-亚洲中文字幕久久无码精品-午夜精品亚洲一区二区三区嫩草-日韩人妻一区二区三区蜜桃视频-国产一区二区精品高清在线观看-国产欧美日韩综合精品一区二区

您好, 歡迎來到化工儀器網

| 注冊| 產品展廳| 收藏該商鋪

15101169516(微信同號)

business

首頁   >>   供求商機

熱損耗檢測系統-熱損耗檢測系統
  • 熱損耗檢測系統-熱損耗檢測系統
舉報

貨物所在地:北京北京市

更新時間:2025-02-18 10:28:31

瀏覽次數:240

在線詢價收藏產品

( 聯系我們,請說明是在 化工儀器網 上看到的信息,謝謝!)

Heatprobe Shown With Optional “K” Factor Attachment
Industrial/Residential Heat Loss Surveys
Building Insulation Conformance Tests
Refrigerator Insulation Testing
Boiler/Steam Pipe Heat Loss Measurements
”K” Factor Determinations
 
APPLICATION
PRINCIPLE
 
The Model HB-100 Heatprobe is a solid state, thermoelectrically powered, digital readout, heat flux measuring system. The unit is capable of directly measuring heat fluxes from 0.1 watts/meter to 1350 watts/meter ; it can therefore detect and respond to the entire practical range of heat fluxes normally encountered in the field or laboratory.
 
Measurements may be made of the total heat flow either to, or from any solid surface to which the
transducer may be attached (Fig. 1). When the transducer attains thermal equilibrium with the heat
transfer surface and its surroundings, the digital readout indicates the steady state heat flow in terms of watts/meter . Transient heat flow fluctuations having periods of five seconds or more may also be followed.
 
The “K” factors of walls or other insulated barriers may be measured with the Model HB-100. The
readout is also designed to measure temperatures of both surfaces of a wall or barrier; the readout
automatically computes the resulting surface temperature difference. With the measured heat flux
and temperature difference, the “K” factor can be determined.
 
PRINCIPLE
The flow of heat from, or to the surface whose heat flow rate is to be measured creates a small
temperature difference between the upper and lower surfaces of the transducer. These surfaces are in thermal contact with a special, miniature, high temperature thermopile which generates a direct
current signal from the temperature difference. The signal is directly proportional to the heat flux
through the transducer. The hundreds of thermoelectric elements in each transducer yield multi-millivolt signals which may also be measured separay by a portable potentiometer, or
recorder. The thermal resistance introduced by the transducer is normally negligible for most practical applications.
 
CALIBRATION
Each Heatprobe transducer is individually calibrated at a base temperature of 75 F. An absolute calibration technique is used to determine the transducer constant to the required accuracy. (ASTM C177-76, mod.)
 
OPERATION
The increasing emphasis on energy conservation has prompted renewed interest in the heat
transport characteristics of both commercial and residential buildings. To satisfy the requirement
for quantitatively establishing relative heat losses through structural components, a portable system for directly measuring heat losses is necessary. In addition to adequate sensitivity and accuracy, the system should rapidly respond in order that a series of surface heat loss determinations be made under a fixed set of environmental conditions. It is only under these circumstances that a true comparison can be made between the heat transfer characteristics of the various building components. The Model HB-100 has been designed to satisfy most requirements for such structural heat loss determinations.
To conduct a local heat loss survey, the heat flux probe is attached to the heat transfer surface
either by means of tape, or a demountable adhesive (Fig. 1). The signal cable is conducted
parallel with the surface to the readout/operator, as shown in Figure 1. The operator should minimize his thermal view of the transducer because of its sensitivity to body heat. Measurements can be taken as soon as the transducer reaches thermal equilibrium. Air currents may cause minor
fluctuations, however, these can be averaged out over several minutes.
 
To determine the thermal conductance of a wall or barrier, the temperature sensors are attached opposite each other on both sides of the barrier through which a steady flow of heat exists.
 
The Heat flux probe is attached to the interior wall surface immediay adjacent to the temperature sensor (Fig. 3). Heat flux and temperature difference data are read out consecutively on the digital meter.
 
The thermal conductance of heavily insulated walls which undergo temperature transients may also be measured by means of periodic averaging over several transients.
 

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

您的留言已提交成功!我們將在第一時間回復您~
在線留言

會員登錄

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:
主站蜘蛛池模板: 徐汇区| 池州市| 方城县| 青铜峡市| 蒙阴县| 兴山县| 黄骅市| 厦门市| 西乌| 大厂| 仙居县| 东平县| 富平县| 仙居县| 株洲市| 庄浪县| 贵南县| 安达市| 沅江市| 福州市| 镇平县| 邢台市| 乐都县| 濮阳县| 家居| 建水县| 阿克苏市| 河东区| 岑溪市| 右玉县| 蚌埠市| 田林县| 安仁县| 通海县| 安顺市| 荔波县| 奉化市| 延安市| 锡林浩特市| 肃南| 永吉县|