亚州一区二区三区中文字幕国产精品-日韩人妻一区二区三区蜜桃视频-亚洲中文字幕久久无码精品-午夜精品亚洲一区二区三区嫩草-日韩人妻一区二区三区蜜桃视频-国产一区二区精品高清在线观看-国产欧美日韩综合精品一区二区

產品展廳收藏該商鋪

您好 登錄 注冊

當前位置:
美國布魯克海文儀器公司>資料下載>測量應用案例-20190607

資料下載

測量應用案例-20190607

閱讀:150          發布時間:2019-6-10
提 供 商 美國布魯克海文儀器公司 資料大小 1.3MB
資料圖片 下載次數 39次
資料類型 PDF 文件 瀏覽次數 150次
免費下載 點擊下載    
 文獻名: Experimental and Mechanistic Study of Stabilized Dry CO2 Foam Using Polyelectrolyte Complex Nanoparticles Compatible with Produced Water To Improve Hydraulic Fracturing Performance

 

作者: 1Hooman Hosseini, 2Jyun Syung Tsau, 2Karen Shafer-Peltier, 3,4Craig Marshall, 5Qiang Ye, 1Reza Barati Ghahfarokhi

1Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA

2Tertiary Oil Recovery Program, University of Kansas, Lawrence, Kansas 66045, USA

3Department of Geology, University of Kansas, Lawrence, Kansas 66045, USA

4Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

5Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, USA

 

摘要:The amount of fresh water used in hydraulic fracturing can be significantly reduced by employing produced water-compatible supercritical CO2 (scCO2) foams. Foams generated using surfactants only have suffered from long-term stability issues resulting in low viscosity and proppant-carrying problems. In this work, foam lamella stabilization with polyelectrolyte complex nanoparticles (PECNPs) and wormlike micelles (WLMs) is investigated. Electrostatic interactions are studied as the defining factors improving the hydraulic fracturing performance using the PECNP system prepared in produced water. Two oppositely charged polyelectrolytes are investigated to generate a more stable lamellae between the aqueous phase and the scCO2 while degrading in the presence of crude oil. The generated dry foam system is used as a hydraulic fracturing fluid in a tight shale formation. The strong compatibility of the synthesized PECNPs with zwitterionic surfactants prepared in highly concentrated brine in the form of wormlike micelles above critical micelle concentration (CMC) helps develop a highly viscous, dry foam capable of using produced water as its external phase. This foam system improves fracture propagation and proppant transport fracture cleanup compared to the base case foam system with no PECNPs. The formation of PEC–surfactant nanoparticles was verified via zeta potential, particle size analysis, and transmission electron microscopy; the underlying mechanism was identified as electrostatic rearrangement of WLMs along the PECNP’s perimeter or formation of electrostatically bonded micelles with the nanoparticle to create a new enhanced nanoparticle. A Raman spectroscopic model was developed to understand the PECNP–surfactant spectra and subsequent spectroscopic and hence structural changes associated with complexation. Enhanced bulk viscosity and improved foam quality as a result of complexation at the interface was identified with rheometry in addition to sand pack experiments with PECNP–surfactant ratios of 1:9 and 4:6 in 33.3 kppm and 66.7 kppm salinity brine systems, respectively. Enhancement in the shear thinning and cleanup efficiency of the fracturing fluid was observed. Formation damage was controlled by the newly introduced mixtures as fluid loss volume decreased across the tight Kentucky sandstone cores by up to 78% and 35% for scCO2 foams made with PECNP–WLMs in 33.3 and 66.7 kppm salinity brine, respectively. The produced water compatibility and reduction of water disposal presented the prospect of environmentally friendly scCO2 foams for hydraulic fracturing of unconventional reservoirs.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復您~

對比框

產品對比 產品對比 聯系電話 二維碼 意見反饋 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
主站蜘蛛池模板: 乌恰县| 温泉县| 通州区| 合山市| 沾益县| 平凉市| 惠东县| 三原县| 沂南县| 庆阳市| 浮梁县| 天峻县| 南漳县| 论坛| 广州市| 克拉玛依市| 安福县| 丽江市| 望都县| 沾化县| 大足县| 乐山市| 大关县| 遂溪县| 化德县| 罗源县| 炉霍县| 定南县| 赤城县| 沭阳县| 万宁市| 华阴市| 板桥市| 金湖县| 兴宁市| 东海县| 玉林市| 和林格尔县| 阿拉善右旗| 布尔津县| 双流县|